E. Vejmelkova, L. Scheinherrova, M. Dolezelova, P. Rovnanikova, R. Cerny
Wednesday 19 December 2018 by Libadmin2018


Geopolymers are alkali-activated materials produced by mixing silicate and aluminate phases containing minerals or aluminosilicates. This reaction results in stable polymeric networks of aluminosilicates. Nowadays, geopolymers have become very popular since they are seen as a potential alternative to ordinary concrete-based materials. They can be produced with the utilization of a variety of waste products. Therefore, the development of these materials can help to reduce greenhouse gas emissions from the production of concrete-based materials. This study aims to analyze the impact of different curing temperatures (25, 40, 60 and 80 °C) on the geopolymerization process, development of pore structure, basic physical and mechanical properties of ceramic-based geopolymers activated by alkali. Fine ceramic particles used for this study are an industrial waste from the final cutting of the bricks, and thus, this material is available in high quantities. The results showed that the thermal treatment of the fresh mixtures at selected temperatures accelerated the geopolymerization process which was clearly seen on the enhanced 28-days mechanical properties. Nevertheless, this enhancement was in contrary to the data obtained from mercury intrusion porosimetry, as the elevated temperatures of 80 °C led to an increase of porosity at samples.

Keywords: geopolymers, curing temperature, porosity, basic physical properties, mechanical properties

Home | Contact | Site Map | Site statistics | Visitors : 0 / 353063

Follow site activity en  Follow site activity GREEN DESIGN AND SUSTAINABLE ARCHITECTURE  Follow site activity Papers SGEM2018   ?

CrossRef Member    Indexed in ISI Web Of Knowledge   Indexed in ISI Web Of Knowledge

© Copyright 2001 International Multidisciplinary Scientific GeoConference & EXPO SGEM. All Rights Reserved.

Creative Commons License